Algebra 2 – UNIT 3 FUNCTIONS

Critical Area: Instructional time should focus on relating arithmetic of rational expressions to arithmetic of rational numbers. Students identify zeros of polynomials, including complex zeros of quadratic polynomials, and make connections between zeros of polynomials and solutions of polynomial equations. Students will expand understandings of functions and graphing to include trigonometric functions. Building on their previous work with functions and on their work with trigonometric ratios and circles in the Geometry course, students now use the coordinate plane to extend trigonometry to model periodic phenomena. Students synthesize and generalize what they have learned about a variety of function families. They extend their work with exponential functions to include solving exponential equations with logarithms. They explore the effects of transformations on graphs of diverse functions, including functions arising in an application, in order to abstract the general principle that transformations on a graph always have the same effect regardless of the type of the underlying function.

CLUSTERS	COMMON CORE STATE STANDARDS
(m) Interpreting functions that arise in applications in	Functions – Interpreting Functions
terms of the context	 F-IF.4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <i>Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.</i> * F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. * F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
(m) Analyze Functions Using Different Representations	 F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. * b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. * c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. * e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. * F-IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. F-IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
(m) Build a function that models a relationship	Functions – Building Functions
between two quantities	F-BF.1 Write a function that describes a relationship between two quantities. *
	b. Combine standard function types using arithmetic operations. For
	example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate
	these functions to the model. \star
(s) Build new functions from existing functions	

	F-BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. <i>Include recognizing even and odd functions from their graphs and algebraic expressions for them.</i> F-BF.4 Find inverse functions.	
	a. Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2x^3$ or $f(x) = (x + 1)/(x - 1)$ for $x \neq 1$	
(s) Construct and compare linear, quadratic, and exponential models and solve problems	Functions – Linear, Quadratic, and Exponential Models F-LE.4 For exponential models, express as a logarithm the solution to $ab^{ct} = d$ where a, c , and d are numbers and the base b is 2, 10, or e ; evaluate the logarithm using technology. \star [Logarithms as solutions for exponentials.] 4.1 Prove simple laws of logarithms. CA \star 4.2 Use the definition of logarithms to translate between logarithms in any base. CA \star	
 (s) Perform arithmetic operations with complex numbers (s) Use complex numbers in polynomial identities and equations. [Polynomials with real coefficients.] 	Number and Quantity – Complex Number System N-CN.1.Know there is a complex number <i>i</i> such that $i^2 = -1$, and every complex number has the form a + bi with <i>a</i> and <i>b</i> real. N-CN.2. Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. N-CN.7 Solve quadratic equations with real coefficients that have complex solutions. N-CN.8 (+) Extend polynomial identities to the complex numbers. For example, rewrite $x^2 + 4$ as $(x + 2i)(x - 2i)$. N-CN.9 (+) Know the Eurodemontal Theorem of Algebra: show that it is true for quadratic polynomials	
MATHEMATICAL DDACTICES	I EADNING DOCCESSIONS	
 MATHEMATICAL PRACTICES Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics. Use appropriate tools strategically. Attend to precision. Look for and make use of structure. Look for and express regularity in repeated reasoning. 	Emphasize Mathematics Practices 1, 2, 4, 5, and 7 in this unit.	
	LEARNING PROGRESSIONS	
High School Progression on Functions http://commoncoretools.me/wp-content/uploads/2013/07/ccss_progression_functions_2013_07_02.pdf		

(m) Major Clusters – area of intensive focus where students need fluent understanding and application of the core concepts.

(S) Supporting/Additional Clusters – designed to support and strengthen areas of major emphasis/expose students to other subjects.

★ Indicates a modeling standard linking mathematics to everyday life, work, and decision-making.

(+) Indicates additional mathematics to prepare students for advanced courses.

ENDURING UNDERSTANDINGS	ESSENTIAL QUESTIONS	KEY VOCABULARY
 Functions need to be understood and interpreted in terms of their context. A function can be represented in different ways; these different representations help with analysis of the function. A function can be used to model the relationship between two quantities. New functions from existing functions can be understood and built. Comparing linear, quadratic and exponential models to solve problems is understood and constructed. Real and complex numbers are important in solving and understanding polynomial equations. 	 What is a function and how does it model a relationship between two quantities? How would you write a function that describes a relationship between two quantities? What are the differences and similarities between real and complex solutions of polynomial equations? Explain graphically or algebraically. How do you differentiate between an exponential and a logarithmic function? How and when do we use laws of logarithms? 	 absolute value function complex numbers complex roots end behavior function Exponential interpret inverse function Laws of Logarithms logarithmic periodicity piecewise function relation relative Maximums relative Minimum step function symmetries transformations trigonometric

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
LAUSD Adopted Textbooks and Programs	Students can make use of graphing software to	Formatiive Assessment
 <u>Big Ideas Learning - Houghton Mifflin Harcourt,</u> 2015: <u>Big Ideas Algebra 2</u> College Preparatory Mathematics, 2013: Core 	investigate the effects of replacing a function (x) by $(x)+k$, $kf(x)$, $f(kx)$, and $f(x+k)$ for different types of functions (MP.5).	PARCC - http://www.parcconline.org/samples/mathemat
 <u>Connections, Algebra 2</u> <u>The College Board, 2014:Springboard Algebra 2</u> 	Tables and graphs should be used to support student understanding of F-BF-4a. This standard	<u>ics/nign-school-mathematics</u>
Illustrative Mathematics Bacteria Populations: F-LE.4 http://www.illustrativemathematics.org/illustrations/370	dovetails with standard F-LE-4 and should be taught in progression with it. Students understand logarithms as functions that <i>undo</i> their corresponding exponential functions;	

LAUSD Secondary Mathematics

Running Time: F-IF.7c	opportunities for instruction should emphasize		
http://www.illustrativemathematics.org/illustrations/1539	this relationship.	LAUSD Assessments	
Graphs of Power Functions: F-IF.7c			
http://www.illustrativemathematics.org/illustrations/627		The district will be using the SMARTER Balanced	
Exponentials and Logarithms I: F-BF.4		Interim Assessments. Teachers would use the Interim	
http://www.illustrativemathematics.org/illustrations/600		Assessment Blocks (IAB) to monitor the progress of students. Each IAB can be given twice to show	
Exponentials and Logarithms II: F-BF.5, F-LE.4		growth over time	
http://www.illustrativemathematics.org/illustrations/615		growth over time.	
Complex number patterns: N-CN.1		State Assessments	
http://www.illustrativemathematics.org/illustrations/722		California will be administering the SMARTER	
Powers of a complex number: IN-CN.2		Balance Assessment as the end of course for	
Completing the squere N CN 7: A DEL 4		grades 3-8 and 11. There is no assessment for	
http://www.illustrativemathematics.org/illustrations/1600		Algebra 1.	
<u>http://www.mustrativemathematics.org/mustrations/1090</u>		The 11th grade assessment will include ítems	
Incide Mathematics		from Algebra 1, Geometry, and Algebra 2	
		standards. For examples, visit the SMARTER	
Measuring Mammals- F-BF.4		Balance Assessment at:	
http://www.insidemathematics.org/problems-of-the-		http://www.smarterbalanced.org/	
month/pom-measuringmammals.pdf			
LANGUAGE GOALS for low ach	ieving, high achieving, students with disabilities and	English Language Learners	
• Students will describe orally and in writing the process	of graphing functions using the terms: intercepts, end	d behavior, and maximum/minimum.	
• Students will describe orally and in writing transformation	tions in terms of the parent function.		
• Students will compare and contrast functions and their	inverses in oral and written form.		
• Students will describe orally and in writing the steps re	quired to express exponential equations in logarithmi	c form and solve them.	
• Student will describe orally and writing how they apply	y polynomial operations to complex numbers; for exa	mple, $x^2 + 4 = (x + 2i)(x - 2i)$.	
	PERFORMANCE TASKS		
Mathematics Assessment Project Formative Assessment	nts/Tasks		
Patchwork – F-BF.1 <u>http://map.mathshell.org/mat</u>	erials/download.php?fileid=/54		
Sidewalk Patterns – F-BF.1 <u>http://map.mathshell.org/materials/download.php?fileid=760</u>			
Printing Tickets – F-IF.4 <u>http://map.mathshell.org/materials/download.php?fileid=772</u>			
Illustrative Mathematics			
Identifying graph of functions – F.IF.7c			
http://www.illustrativemathematics.org/illustrations/803			
Inside Mathematics			
Digging Dinosaurs- F-IF.8, F-LE.1 http://www.ins	idemathematics.org/problems-of-the-month/pom-digg	gingdinosaurs.pdf	

LAUSD Secondary Mathematics

DIFFERENTIATION		
UDL/FRONT LOADING	ACCELERATION	INTERVENTION
Have students discuss the relationship between a	Activate a discussion around explicit and implicit	Student use apps, software, or graphing
function and definition of its inverse.	function. Students could use a T-chart to describe the	calculator to practice graphing square root,
	differences between explicit and implicit function. Have	Cube root, and piecewise-defined functions,
Engage students in an activity to graph square root,	students show symbolically and graphically how to	including step functions and absolute value
Cube root, and piecewise-defined functions,	transform a function to its inverse.	functions. They describe the behavior of each
including step functions and absolute value	Show that when $f(x)=2x+3$, then $x=2f(x)+3$. Solving for	of the above functions and write about them.
functions.	f(x), the resulting inverse will be $f(x)=(x-3)/2$	
	Example: $y=2x+3$, then $x=2y+3$ solve for y gives the	
Have students practice how to graph polynomial	inverse of (x) as $y=(x-3)/2$.	
functions, identifying zeros when suitable		
factorizations are available, and showing end	Graphically you can show the inverse of a function.	
behavior.	Make a table of the function $f(x)$ and its inverse. Graph x	
	and $f(x)$ values from the table and then develop another	
	table by switching the numbers.	

References:

- 1. National Governors Association Center for Best Practices, Council of Chief State School Officers. (2010). *Common Core State Standards (Mathematics)*. Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers.
- 2. McCallum, W., Zimba, J., Daro, P. (2011, December 26 Draft). *Progressions for the Common Core State Standards in Mathematics*. Cathy Kessel (Ed.). Retrieved from http://ime.math.arizona.edu/progressions/#committee.
- 3. Engage NY. (2012). New York Common Core Mathematics Curriculum. Retrieved from <u>http://www.engageny.org/sites/default/files/resource/attachments/algebra-ii-m1-module-overview-and-assessments.pdf</u>.
- 4. Mathematics Assessment Resource Service, University of Nottingham. (2007 2012). Mathematics Assessment Project. Retrieved from http://map.mathshell.org/materials/index.php.
- 5. Smarter Balanced Assessment Consortium. (2012). Smarter Balanced Assessments. Retrieved from http://www.smarterbalanced.org/.
- 6. Partnership for Assessment of Readiness for College and Career. (2012). PARCC Assessments. Retrieved from http://www.parcconline.org/parcc-assessment.
- 7. California Department of Education. (2013). Draft Mathematics Framework Chapters. Retrieved from http://www.cde.ca.gov/be/cc/cd/draftmathfwchapters.asp.
- 8. National Council of Teachers of Mathematics (NCTM) Illuminations. (2013). Retrieved from http://illuminations.nctm.org/Weblinks.aspx.
- 9. The University of Arizona. (2011-12). Progressions Documents for the Common Core Math Standards. Retrieved from http://ime.math.arizona.edu/progressions.